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ABSTRACT

Mathematical models represent one end of a spectrum of activities designed to investigate
natural phenomena.  They attempt to simplify systems to uncover relationships which yield
a consistent pattern when compared with in situ behaviour.  Models can be continuous or
discrete.  Continuous models use families of differential or partial differential equations
and are generally applied to large scale events.  These can include global or oceanic cycles,
the spread of microbial pathogens or genetically engineered species through an ecosystem
or pattern formation like fairy rings or periodic bands generated by bacteria and fungi.
Discrete models, for example cellular automata or the Swarm modelling system, apply
most appropriately to micro-scale phenomena.  These have been applied to bacterial
colony formation and biofilm structures.

Introduction

Routes to investigating problems in microbial ecology form a hierarchy whose highest
level is the natural ecosystem itself.  Below this level is the microcosm which in the words
of Pritchard and Bourquin [25] is defined as: '...an attempt to bring an intact minimally
disturbed piece of an ecosystem into the laboratory for study in its natural state'.  The
microcosm is a homologue of the system itself, but it may also be manipulated under
controlled conditions in the laboratory.  At the third level is the experimental model
system.  This aims to simplify the natural system in order to investigate one or a small
number of parameters ignoring or holding other factors constant.  A good model should
reveal the common properties of a class of system it aims to reproduce.  Model systems in
biology are synthetic.  For example they may be communities reconstructed from pure
cultures.  However complex the mixture, the model can never become the natural system
since it is impossible to prove that some unidentified, unculturable organism is absent
though contributing to the natural community.

The most abstract level in this hierarchy is the mathematical model.  Here the behaviour
of a system is reproduced as a series of mathematical relationships which reflect and often
predict its behaviour.  Mathematical models try to incorporate the most important aspects
of a system but are often extreme simplifications of the in situ  phenomenon as far as all
else is concerned.

Like an experimental model, a mathematical model is an analogue of reality.  It takes
characteristic properties of the system and translates these into mathematical equations.
Each equation attempts to define relationships within the model according to the perceived
behaviour of the natural phenomenon.  Changes in the latter should be reflected by the
behaviour of the mathematical model.  A key function of the model therefore is to predict
behaviour.  A model is only validated if such predictions are confirmed.  Where they are
not, the model, like any scientific theory (to which models are of course related!), must be
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altered.  There is a huge range of different approaches to modelling.  Some of these have
been reviewed by Characklis [3].

Microbes and their activities bridge the macroscopic and the microscopic worlds.  This
has a number of important implications.  The macro-world is well represented by systems
of differential equations.  Thus, the Fick laws of diffusion, the Navier-Stokes equation and
the Schrodinger equations all apply reliably in the macro world and are called continuous
models.

In the micro world we are no longer dealing with a continuum of many processes.  Thus
pH and hence the activity of microbes can be determined by a very small number of
protons within or around a single cell.  What applies to protons will also probably apply to
intracellular pools of substrates, products, messenger and signal molecules.  Continuous
models in the macro world can be deterministic though they may not.  For example, certain
coupled non-linear equations can generate catastrophe from what are smoothly changing
solutions.  Chaos, which is defined as a rate of loss of information to zero, is a property of
some functions, for example models as simple as the logistic equation.  On the other hand
deterministic equations entail zero loss of information.

In the micro world an appropriate approach is discrete modelling.  Here any or all of
space, time and state may be discrete.  For example, if space and time are discrete but state
is continuous, the system is referred to as a coupled map lattice.

It is possible to use both continuous and discrete modelling to interpret microbial
behaviour. For example, periodic growth bands (related to Liesegang ring formation in
chemical reaction diffusion systems) can be modeled using continuous partial differential
equations.  On the other hand, growth of bacterial colonies showing pattern formation
related to substrate concentration, is best modeled using cellular automata (CA) models
which are par excellence examples of discrete systems.  One of the more interesting
properties of CA and related models is that they can generate complex structures having
emergent properties.  These cannot be predicted any more quickly than by running the
simulation itself.  Just to muddy the waters slightly, it is possible to construct discrete
models, which are deterministic.  Finally, difference equations used in finite difference and
finite element analytical models are discrete in time and space!

Continuous Models

Large Scale Systems

Very large-scale models apply to oceanic microbial ecology.  For example, Thingstad and
Lignell [31] have established a group of related models to predict the control of bacterial
growth rate, abundance, diversity and carbon demand.  They stress the importance of
bacterial virus particles, not in controlling growth rate or abundance of bacteria, but in
altering the diversity of these populations.

Belov and Giles [1] have investigated the dynamics of cyanobacterial growth and
behaviour, in particular the role of buoyancy changes in these organisms.  The model
consisted of seven differential and integro-differential equations and allowed the authors to
investigate several scenarios of population growth.

The Spread of Microbes Through Natural Habitats

An important element in microbial ecology is the way in which disease causing or other
microbes and genetic elements spread through natural populations.  Scott et al [29]) have
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established a model which predicts the movement of inoculant bacteria and substrates
through the rhizosphere of wheat plants.  Such a model has obvious value in assessing the
risks involved in the release of genetically engineered organisms.

Microbial Growth Dynamics in vitro and in situ

By far the commonest application of time-continuous modelling has been with microbial
growth dynamics (see for example Pirt [24]).  More recently Panikov [20] has produced an
extensive text on the subject, Microbial Growth Kinetics.  Panikov includes numerous
examples of growth models in closed and open, homogeneous or heterogeneous systems,
both in the laboratory and from the environment.  Most recently Panikov [21] has applied
families of differential equations to model microbial growth in bioreactors and in natural
soils.

Continuous Biofilm Models

Until recently microbial films were assumed to be smooth planar homogeneous structures
and this led to the generation of continuous mathematical models such as Biosim [34]
However  the realization that many biofilms could not be regarded as homogeneous
layered systems led Wanner and colleagues to formulate a newer model called Aquasim
[26, 33, 34, 35, 36].  This version of the model allowed the attachment and detachment of
cells at the substratum surface but also incorporated sufficient spatial heterogeneity that
transport through pores and water channels could be investigated.

An excellent example of the application of continuous models in biofilm research is the
work of Dibdin who set out to model pH changes occuring in dental plaque.  Shellis and
Dibdin [30] reported on the high buffering capacity of this biofilm.  This led Dibdin to
formulate a numerical model of acid fluxes in dental plaque [6, 7, 8].  The model
incorporated fixed charges associated with the chemical structures in plaque, as well as the
neutralisation of acid groups by the flux of carbonate and phosphate from saliva into the
plaque.  It was a good mechanistic model with clear predictive value.  It modeled only the
diffusive processes associated with the mature plaque and said nothing about the microbial
population present.

Periodic Structures in Microbial Ecology

Continuous time models can be used to investigate periodic structures such as fungal
infections on rotting fruit, concentric ring structures in developing microbial colonies, fairy
rings or bands of growth of Gallionella in aquatic sediments.

Hoppensteadt and Jager, [12] and  Hoppensteadt et al [13] explained periodic ring
formation in agar plate cultures of Escherichia coli  having glucose diffusing outwards
from the centre using a hysteresis model.  Bacillus cereus growing on a casamino acid-
containing medium in soft agar with counter-gradients of glucose and oxygen developed a
series of regular growth bands.  The latter (a) depended on oxygen and glucose; (b) were
not due to motility; (c) were altered by increasing the buffering capacity of the medium
and; (d) could be reproduced by replacing oxygen with a gel layer containing alkali [4, 37].
The system was modeled using a system of partial differential equations.  In both systems
large pH changes were identified as the main cause of the bands.  The only way in which
periodic bands or concentric rings could be produced in both of these model systems was
by invoking an asymmetric activation threshold.  It was considered that the asymmetry was
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due to changes in the time constants between stopping growth (fast) due to low pH, and
growth recommencing (slow) as conditions became favorable.

Discrete Models

There are many different types of discrete model, however the systems of interest here are
all related to cellular automata (CA) derived from Turing’s original conceptual automaton
model, which lies at the heart of every computer constructed since.  The first CA model to
capture the public imagination was Conway’s Game of Life which consisted of a grid on
which cells were placed in particular patterns.  The computer scanned every point on the
array.  If it was occupied, application of very simple rules allowed the cell to survive, die
or reproduce.  As the game proceeded a range of more or less elaborate patterns could be
generated depending on the original placement of the cells.  It should be noted that in
CA’s, rules act locally but apply globally.

There have been a number of applications of cellular automata.  According to
Ermentrout and Edelstein-Keshet [9] CA’s can be divided into three main classes:

1. Deterministic or Eulerian automata:  These resemble the solution to partial
differential equations and can model oscillations in excitable media, cardiac
function and predator prey dynamics.  The Game of Life is a deterministic
automaton.

2. Lattice gas models:  Particles on a discrete spatial grid are free to move around.
Such movements are driven by random events.  Lattice gas systems include
fibroblast aggregation, ant trail organization and topographical neural maps.

3. Solidification models: Particles become bound and cannot move again.  Models
include phase change (solidification), precipitation, fungal growth patterns, and
growth of non-motile bacterial colonies.

Biofilm Modelling

An important question in microbial ecology is the relationship between pattern forming
processes and stochastic and chaotic events on the organisation of microbial communities.
For example, the anaerobic digester granule is a spherically stratified community with
different physiological types located in different zones.  Biofilm systems are much more
variable and because of this there has not been a sensible consensus model of biofilm in
general.  As we will see there are at least three categories of biofilm model possible.  These
are broadly: (i) separate stacked structures consisting of microcolonies well spaced from
their neighbours [14, 15]; (ii) stalked mushroom shaped structures penetrated by water
channels [5, 17]; (iii) dense homogeneous biofilm containing microcolonies but lacking
obvious or extensive water channels [19].

Thus the type of biofilm that forms on the inside of potable water pipes is an example of
the first category and it seems unlikely that such complex assemblages could be modeled
by using families of differential equations.  Here the method of choice is to use discrete
models such as CA’s.

Van Loosdrecht et al [32] suggested that shear and substrate concentration influenced
biofilm structure.  Wimpenny and Colasanti [38] considered that the division of biofilm
into the three separate classes described above required some kind of unifying explanation.
They examined the substrate concentration in a variety of habitats and found that it varied
over at least six orders of magnitude.  The available nutrient in potable water systems
(around 1 mg/l or less) at one end of the scale, rose to at least 100 g/l and probably higher
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for short periods in the mouth when a human was consuming chocolate bars or proprietary
bottles of cola.  It did not seem unreasonable to consider that, over such a range, biofilm
structure might vary enormously.  A simple cellular automaton was used to investigate this
in more detail.  Space, time and state were discrete in this system.  Substrate was
distributed randomly as individual units across the array at the start.  The latter were given
an arbitrary diffusion coefficient, which determined how far substrate units would move at
each iteration of the model.  Cells were ‘inoculated’ onto the substratum at the start of each
simulation.  Cells had a ‘yield coefficient’ expressed as the number of units of substrate
each cell had to accumulate before it divided.  For a simple model the results resembled the
natural system in an uncannily convincing manner.  With small amounts of substrate,
‘growth’ led to the slow formation of branched stacks of cells.  Many of the inoculum did
not start to grow at all since substrate was completely depleted near the substratum surface:
this corresponded to a thin layer of apparently non-growing cells seen in pictures of actual
biofilm growing in low nutrient water systems.  At higher concentrations of nutrient an
irregular structure appeared with some pores within it.  Modifying the yield and diffusivity
of substrate generated convincing mushroom like structures.  At the highest concentration
a dense smooth structure appeared in the model.

Examination of the model revealed (crudely but effectively) the stochastic nature of film
growth.  Because of the ‘graininess’ of the substrate and its random distribution, different
cells would start to grow and generally only a few of these would ‘survive’.  The picture in
identical replicates of the simulation shows this clearly.  Each of the structures is entirely
different in detail but virtually identical in general form.  This is true even if the pedigree
of each inoculating cell is compared at low or at high substrate concentrations.

Since this work was published, a much more detailed and faithful simulation of biofilm
growth has been produced by Picioreanu and his colleagues [22, 23 and this Proceedings].
The model used was a hybrid continuous-discrete system.  Here the solutes diffused across
the field as a continuum according to reaction-diffusion partial differential equations.  The
cells or cellular aggregates were modeled as discrete entities according to a cellular
automaton.  These workers generated two- and three-dimensional results and emphasized
the importance of both shear and substrate concentration on biofilm structure.
Hermanowicz [11] has also produced a CA model of biofilm development following
similar lines to the work described above.

Bacterial Colony Morphology

Bacterial colonial growth is one specific area of microbiology that has at least some links
with microbial ecology.  It also represents an interface between the use of continuous or
discrete models.  Where there is evidence of concentric ring formation, especially in
swarming organisms such as Proteus mirabilis, continuous time models seem appropriate
[10, J. Shapiro, E. Budrene personal communication).  There are many examples of
bacteria which form complex, often beautiful growth patterns.  Most attention has been
paid to organism of the Bacillus genus, in particular Bacillus subtilis.  A number of
different discrete models have been produced which reproduce some of the characteristics
of these organisms.  Schindler and Rataj [27] and Schindler and Rovinsky [28] used simple
models associated with pattern formation, for example the diffusion limited aggregation
(DLA) model and the ballistic aggregation model (BAM), to model growth of B.
licheniformis.  Matsushita and Fujikawa [18] mapped the response of a strain of B. subtilis
to substrate and agar concentration.  These workers applied a DLA model to explain their
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results.  The most sophisticated results used a CA to model the growth of Bacillus subtilis
in a substrate gradient field [2].  The CA model was modified to include changes in growth
pattern due to signaling between groups of cells.

Autonomous Agent Models

Another example of a discrete modelling system is the Swarm system developed by the
Santa Fe Institute in New Mexico, USA.  Swarm was developed as a system for modelling
the behaviour of hundreds or thousands of autonomous agents interacting within a
dynamically changing environment.  Each agent is an 'individual' object, or piece of
computer code which obeys a set of rules governing its behaviour.  The Swarm system has
been applied in a number of quite disparate areas, for example in ant colony and other
ecological models.  It has recently been used by us to develop a model of bacterial colony
growth [16, and the paper by Kreft et al in this Proceedings].  This model, called BactSim,
incorporates nutrient uptake, physiology, energy and maintenance reactions, growth and
cell division and hence aims to reproduce, albeit simply, the physiology of an individual
cell.  Swarm is intellectually more satisfying than the simpler CA model since the
behaviour of individual agents is closer to the real behaviour of living organisms than are
the 'cells' of a CA model.  The main problem with Swarm agents is that they require much
larger computer resources to model natural communities than does the simpler CA model.

Discussion

There are a great many different approaches to mathematically modelling microbial
ecosystems.  Choice is determined largely by the types of questions asked, and particularly
by the scale under consideration.  Continuous models susceptible to analysis using
differential and partial differential equations have a huge part to play in the investigation of
large scale systems, or where regular phenomena like periodic structures form.  As spatial
scale is reduced so discrete models can become more important.  There is naturally a
degree of overlap between the two.  For example growth of Proteus mirabilis on an agar
plate may generate regular radial growth bands which can be modeled with continuous
systems of partial-differential equations, whilst the colonial growth of a species like
Bacillus subtilis is best examined by a discrete system such as a CA or Swarm model.

I believe that there is an exciting future for discrete models, especially as they become
more sophisticated and are able to incorporate some of the physiological and genetic
properties of interacting species into the structures they predict.  In addition (and vitally),
they must be able to respond to environmental characteristics in an appropriate fashion.  It
must be stressed again and again, that discrete modelling systems like CA and Swarm
models have emergent properties.  Thus it is not possible to predict the composition of a
structure which the model generates any more quickly than by running the model itself.

Finally, it is clear that no one modelling system is ideal.  Different problems require
different solutions.  However I am convinced that it is possible to use the best elements of
each system to generate hybrid models that will contribute significantly to our
understanding of the processes that determine the structure and function of microbial
communities.
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