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The generic, quantitative, spatially explicit, individual-based model BacSim
was developed to simulate growth and behaviour of bacteria. The potential of
this approach is in relating the properties of microscopic entities - cells - to the
properties of macroscopic, complex systems such as biofilms. Here, the growth
of a single Escherichia coli cell into a colony was studied. The object-oriented
program BacSim is an extension of Gecko, an ecosystem dynamics model
which uses the Swarm toolkit for multi-agent simulations. The model describes
bacterial properties including substrate uptake, metabolism, maintenance, cell
division and death at the individual cell level. With the aim of making the
model easily applicable to various bacteria under different conditions, the
model uses as few as eight readily obtainable parameters which can be
randomly varied. For substrate diffusion, a two-dimensional diffusion lattice is
used. For growth-rate-dependent cell size variation, a conceptual model of cell
division proposed by Donachie was examined. A mechanistic version of the
Donachie model led to unbalanced growth at higher growth rates, whereas
including a minimum period between subsequent replication initiations
ensured balanced growth only if this period was unphysiologically long. Only a
descriptive version of the Donachie model predicted cell sizes correctly. For
maintenance, the Herbert model (constant specific rate of biomass
consumption) and for substrate uptake, the Michaelis-Menten or the Best
equations were implemented. The simulator output faithfully reproduced all
input parameters. Growth characteristics when maintenance and uptake rates
were proportional to either cell mass or surface area are compared. The
authors propose a new generic measure of growth synchrony to quantify the
loss of synchrony due to random variation of cell parameters or spatial
heterogeneity. Variation of the maximal uptake rate completely
desynchronizes the simulated culture but variation of the volume-at-division
does not. A new measure for spatial heterogeneity is introduced: the standard
deviation of substrate concentrations as experienced by the cells. Spatial
heterogeneity desynchronizes population growth by subdividing the
population into parts synchronously growing at different rates. At a high
enough spatial heterogeneity, the population appears to grow completely
asynchronously.

Keywords: individual-based modelling, colony growth, growth synchrony, spatial

heterogeneity
INTRODUCTION action, information storage and processing, as well as
variability, is the cell. It therefore seems appropriate to
The fundamental unit of bacterial life, encapsulating construct ecological models in terms of individual cells

Abbreviations:
modelling.

2D, two-dimensional;

and their behaviour. This paper introduces spatially
IbM, individual-based model/ explicit individual-based modelling (IbM) to microbial
ecology. The great potential of IbM lies in addressing
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Fig. 1. Screen shot of a Gecko simulation at time 368 min. The windows with the population growth curve (labelled
Population; units: cell number and time-steps), the total substrate-consumed and total dry-mass curves (labelled Biomass;
units: fg dry mass or substrate and time-steps), the window with the simulation control panel (labelled Swarm), the
window displaying the landscape with the growing colony (labelled Gecko), and the background window showing the
data dumped to one of the log files, can all be seen. In the Gecko window, bacterial cells are drawn as circles (the circle
radius is that which a spherical cell of this volume would have). The substrate concentration gradient is visualized as
follows: the darker the square, the higher the concentration (logarithmic scale).

the following question: is it possible to create a
macroscopic world from data on microscopic entities ?

The existing extensive literature on modelling bacterial
colony growth is based on classical mathematical
population models (Pirt, 1967; Grimson & Barker,
1994) and cellular automaton models (Ben-Jacob et al.,
1994 ; Shapiro & Dworkin, 1997). The former have been
used to describe growth of the colony as a unit and are
limited to simple colony shapes. The latter have been
used to explain qualitatively colonial pattern formation
associated with different nutritional regimes. Picioreanu
et al. (1998a, b) have used a combination of both
approaches to model biofilm growth. IbM has so far not
been used to model colony growth or more complex
structures such as biofilms, which can be viewed as an
assemblage of (micro)colonies. Such systems can be
constructed to be more general, allowing one to treat
biofilms, colonies and other microbial assemblages as
special cases of a unified model. They can be based on
the known physiology of individual cells and thus be
quantitative. They provide the most complete frame-

work for modelling whilst not suffering from many of
the limitations inherent in the other approaches. On the
other hand, such models require more microscopic data
and have higher computational demands.

IbMs have been constructed in a variety of ways
(DeAngelis & Gross, 1992). They all have in common
that individuals are treated either individually or
grouped into cohorts of similar individuals, whereas
population-level models do not allow for differences
between individuals. One important characteristic of
IbMs is that they do not specify any global (population-
level) laws such as exponential population growth. If
exponential growth of the population emerges, it does
so as a result of the substrate uptake, metabolism and
maintenance of each of the individual cells. Many IbMs
also allow for spatial differences, which are so important
in microbial ecology (Wimpenny, 1992). To facilitate
future extensions and modifications, in this study we
constructed a flexible model structure with object-
oriented programming techniques.

Constructing a single-cell model as the basis for a
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population model meets with problems specific to
microbiology, that is obtaining single-cell properties
from population-average measurements which so far
constitute the bulk of the microbiological literature
(Davey & Kell, 1996). Single bacterial cell models have
been published for Escherichia coli (Domach et al.,
1984; Joshi & Palsson, 1988) and Bacillus subtilis (Jeong
et al., 1990). The purpose of these studies was to
integrate subcellular processes into whole-cell models,
necessitating the use of much information on the
biochemistry of these bacteria. Such information is
incomplete or unavailable for other species and indeed
may not be totally satisfactory for E. coli. The purpose
of our model, in contrast, is to integrate cellular
processes into a generic population model. It therefore
implements a much simpler metabolism, treating the cell
as a black box as far as possible, and requires as few as
eight parameters that are generally available or easily
measurable. The simplified E. coli model of Jaworska et
al. (1996) uses 22 parameters and the B. subtilis model of
Jeong et al. (1990) uses nearly 200. In common with
these authors, we believe that fitting a model to empirical
data has to be avoided if the purpose of the model is not
descriptive but predictive. For us, prediction is more
than specifying a list of model assumptions which
generate macroscopic structures that appear to look
realistic, e.g. colony morphology. The aim is to obtain
falsifiable, that is quantitative, predictions from entering
physiologically based assumptions and measurable
parameters into the model.

Here, BacSim is described, and results on cell division,
growth curves and loss of growth synchrony are
presented. New measures for synchrony and spatial
heterogeneity are introduced.

Movies of growing colonies and additional screen shots,
as well as the source code of the simulator and an on-line
document, can be accessed on our web page (http://
www.eeb.yale.edu/ginger/bacillus/bacsim.html).

THE MIODEL

BacSim is an extended and modified version of Gecko. Gecko
is an ‘ecological flight simulator’ which has been used to study
ecosystem dynamics such as trophic interactions in food webs
(Schmitz & Booth, 1997; Booth, 1997). Gecko has been
written in the object-oriented language Objective-C using the
Swarm toolkit for multi-agent simulations under development
at the Santa Fe Institute, New Mexico, USA (Minar et al.,
1996). Swarm’s objective is to provide a common simulation
platform for agent-based modelling in economics, anthro-
pology, geography, ecology, ethology, and other fields con-
cerned with complex adaptive systems. It is a collection of
software libraries which provides the functionality common
to all such applications.

The principle of BacSim is to represent each simulated
bacterial cell electronically as an object instance of an object-
oriented program. These objects are called agents since they
are independent entities with their own state (set of parameter
values) and behaviour. Nevertheless, they are all of the same
type (‘class’ in object-oriented terminology), having the same
potential regarding state and behaviour.
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Fig. 2. Graphical pseudo-code of bacterial agent activities.
Dashed arrows denote the sequence of methods (methods in
boxes) carried out at each time-step by each agent. The
rhomboid if-boxes denote decision methods. The funnel
symbolizes diffusional substrate flux from source (the reservoir
bordering on the diffusion lattice) to sink (the cells in the
colony). Simple arrows indicate metabolic conversions. The
waste produced from substrate (due to metabolism) and from
cell matter breakdown (due to maintenance) is set to zero after
conversions (earth symbol). The double arrow denotes the
coupling of diffusion and uptake methods in the program. The
shoving of cells avoids the temporary overlap of cells that
would otherwise ensue.

BacSim agents exist in a continuous 2D space and have free
range and extent — they occupy and compete for space. The
agents are actually spheres, but they are projected onto this 2D
space as circles (Fig. 1). For substrate diffusion, a lattice (Fig.
1) with variable grid granularity and overall size is used to
simulate diffusion gradients quantitatively. Agents take up
substrate from the lattice elements in which they are located.
Time is discrete and agents repeat their schedule of activities
once every time-step (Fig. 2). We used time-steps of 01 min. A
compilation of the model parts and their implementation is
given in Table 1.

Substrate diffusion. The diffusion lattice is initially filled with
substrate at a given concentration. In all simulations reported
here, a reservoir of constant substrate concentration that
borders the diffusion lattice was also filled with the same
substrate concentration. The substrate concentration of the
colony periphery was always only marginally lower than the
reservoir concentration which is stated in Results. For the
coupled diffusion and uptake subroutines, a variable and self-
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adjusting number of substeps per time-step was employed for
computational efficiency reasons. (Note that this substepping
scheme is a mere technicality that does not bear on the global
time-step of 0-1 min which drives time and sets the time
precision of the model.) It is hard to overemphasize the
importance of bacteria being small (Koch, 1996a). With regard
to the model, it was necessary to make up to 10000 uptake
steps min~! coupled to diffusion steps at intermediate substrate
concentrations because otherwise the cells would have con-
sumed more substrate per step than was available. In other
words, the cells can clear their surroundings of substrate in
about 0-1 ms. This way, diffusion limitations as artefacts of
the model can be avoided. The diffusion limitations observed
are therefore natural.

Characteristics of bacteria agents

Substrate uptake. Glucose is assumed to be the limiting
substrate. Its uptake is considered to follow either the
Michaelis—Menten equation or the Best equation (Koch, 1997).
Uptake is also considered to be proportional either to dry mass
or to surface area. Metabolism of the substrate taken up does
not limit substrate uptake. Neither substrate thresholds nor
exponential population growth are assumed.

Metabolism, maintenance and death. Metabolism converts
substrate into biomass and waste at a fixed efficiency given by
the yield constant. Maintenance reactions convert biomass
into waste also. Waste is then discarded without effect. Main-
tenance is considered to be proportional to dry mass or to
surface area. Maintenance under starvation conditions causes
cells to shrink as biomass functions as an energy reserve. Cells
die if their biomass falls below a minimum value. On death,
biomass is converted back into substrate at a fixed efficiency of
unity, thus allowing cryptic growth under starvation con-
ditions. In fact, the shrinkage rate was much too low to lead to
death during the time span used in our simulations. The
metabolism implemented is as simple as possible. If desired, a
more sophisticated metabolism could be implemented where
information on the growth-rate-dependent variability of
cellular composition or energetic efficiency is available.

Surface area. If used for maintenance or uptake, the surface
area is calculated with equation (7). Note that apart from the
surface area calculation for the modelling of uptake or
maintenance, the cells are simulated as spheres which are
represented as circles (for example see the screen shot in
Fig. 1).

Cell division. The model of cell division from Donachie &
Robinson (1996) was implemented in three different ways:
these are described in detail together with the results. The aim
is to model the dependence of cell size on growth rate. The cell
division process is completed instantaneously. It leads to two
identical daughter cells in juxtaposition. No assumptions were
made concerning growth synchrony.

Random variation of cell parameters. As each simulated cell
has its own set of parameters which is an independent copy of
the list of default parameter values, variation is straight-
forward. New values were obtained by random draws from a
Gaussian distribution with a chosen coefficient of variation
while discarding all values outside the +2¢ range as well as
changes of sign (these precautions are necessary with distri-
butions ranging from — o0 to + 00). As a starting value, we
always used the default given in Table 2, thereby avoiding

unrestrained ‘evolution’. If the current value for the maximal
uptake rate was used as a starting point, those cells with higher
rates would be more likely to produce offspring with even
higher rates that would soon outgrow all other cells (data not
shown). In reality, this tendency would be counteracted by
diffusional and thermodynamic limitations and the metabolic
costs of enzyme synthesis. Since modelling these constraints is
beyond the scope of this paper, this unrealistic pseudo-
evolution was avoided by letting parameters deviate from the
default. This decision is supported by the observation that
variations in growth rate of individual colonies of a clonal
culture are only temporary (Hughes, 1955).

Expansion of the growing colony. Agents shove each other to
simulate the pressure generated by a growing colony in order
to avoid overlap of cells. This makes it unnecessary to assume
a maximum biomass or cell density in the colony as an upper
limit. As data on the volume fraction of a wet colony occupied
by cells are scarce, we adjusted the shoving so that cells merely
did not overlap, resulting in a colony somewhat lighter than
close-packed (see Fig. 6). Pirt (1967) reported a colony density
of E. coli of 01 g dry mass ml ™" that can be used to estimate an
interstice of 77 % assuming a water content of cells of 70 %
(Neidhardt & Umbarger, 1996). Grimson & Barker (1994)
found the cellular volume fraction of a Salmonella
typhimurium colony to be close to the typical value for closed-
packed hard spheres of ~ 64%.

Running the model. The parameters we have used for the
model are summarized in Table 2. The program (Gecko
version 0.4, Swarm library version 961002) was run on a
Pentium133 PC with 64 MB RAM under Linux as operating
system (see the Swarm web page http://www.santafe.edu/
projects/swarm/ for a list of required software). Data output
from the model was extracted and transformed as required
with standard Unix tools (uniq, gawk). All statistical analy-
ses and non-linear fits were performed with Dataplot
(http://www.itl.nist.gov /div898 /software /dataplot.html/
homepage.htm).

RESULTS AND DISCUSSION
Model validation

To facilitate a direct input of literature parameters the
model reads in a file of parameters that can be entirely
calculated from published figures (Table 2). Fitting the
input parameters to obtain the desired output was
unnecessary and was avoided. As a control of numerical
correctness and program design, we verified that the
model output agreed with the model input within the
limits of numerical precision of both the simulation and
the subsequent analysis of output data (Table 2). For the
discrete lattice approximation of diffusion, a calibration
factor had to be determined once by a computer
simulation of a standard experiment to determine the
diffusion coefficient (Adam et al., 1977). To do this, the
diffusion lattice was initialized with unit substrate
concentration in the left half and zero substrate con-
centration in the right half. Then, diffusion was allowed
to proceed for a known number of time-steps as long as
the left- and rightmost lattice parts still retained the
original substrate concentration. The maximum of the
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Table 1. Equations and algorithms used in the model

Parameters are given in Table 2.

Surface area

Diffusion

Colony
expansion

2/3
A= Aspbere € (68;4—2>

Sp+1=5+5, /D

weights in the 9-element nbh:

1141
4 |-20| 4
1141

ro=kr.+tr,—d

Model part Algorithm or equation (No.) Notes Assumptions
ds _ xVmaxs .
Substrate VT Kot (1) s: external substrate concn Growth limited by uptake of
uptake m x: cell dry mass one substrate. Uptake
_ xViax(s + Ky + ) (1—\/1—45]/(5 + Ky + ])2) (2)  v: rate of substrate uptake follows Michaelis—Menten
V= 2] Vimax = tmax/ Ymax; Km = Ks kinetics or the Best
J = Vmax/AP; A: surface area equation.
P: permeability
. dx_ v . . - )
Anabolism  Z7= Voors (3)  Ypha maximum yield Efficiency of substrate
: conversion to biomass is
constant.
Maintenance — 9% — xm Y ax (4) m: maintenance rate Biomass is degraded at a
dt ’ constant specific rate for
maintenance purposes
(Herbert model).

Metabolism = %: YU —xmYpax (5)  u: growth rate Growth is due to anabolism

(growth) max Umay: maximum growth rate and maintenance. End
products of catabolism
are ignored.

Cell volume V: median volume These equations are used
Median V=V,8 (6a) V,: Vatu=0 for the descriptive Donachie
Atdivision  Vy=V, . 28 with (6b) V: volume at division .m(éde.l oglz; the factor 1:433

i . is derived from our
Vd, min=2V,,/1:433 (6€) V4, min: minimum Vg simulation of the volume

g: no. of generations in 1 h

Agpheret the surface area a
spherical cell of the same
volume would have
€ = length/width (eccentricity)

s;: s in centre lattice element
at time-step ¢

s, weighted average of all
in nbh

f: calibration factor (scaled
according to time-step and
lattice element size)

D: diffusion coefficient

7,: overlap radius

k: factor to adjust average
minimum distance between
cells to realistic values
(k=1-3)

7.2 radius of cell

7,,: radius of neighbour

d: distance of cell centres

increase during the
cell cycle.

The cell is assumed to be a
cylinder with hemispheric
ends (Koch, 1985).

A second-order
approximation is used for
the 2D diffusion lattice.
The description is restricted
to the core of the algorithm.
For each lattice element
and diffusion step, the
weighted average of the
substrate concentration in
the 9-element
neighbourhood (nbh) is
calculated.

The colony is assumed to
expand by relaxing the
pressure build-up due to
biomass increase. This is
simulated by minimizing
overlap of cells. For each
cell, the position is shifted
by the vector sum of all
overlap radii. The cells do
not play an active role in
this process.
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Table 2. Parameters used as input in model construction and the resulting model output

We have chosen reliable values typical for E. coli. If uptake is to be described by the Best equation, three instead of two parameters
are needed for uptake. Their values, corresponding to the same data set, can be found in Koch & Wang (1982). For surface area
calculations, an average eccentricity of the cells of 44 (Donachie & Robinson, 1996) was used.

glucose

Parameter Units Input Model output * SD Reference
Hmax: maximum growth rate min~! 0-0205 0-020428 £ 1-7 x 1078 Koch & Wang (1982), batch growth
K ¢ half-saturation constant fg fi-! 2:34x1073 23328 x103+82x1077  Koch & Wang (1982), batch growth
Y hax: apparent yield at g, fg dry mass 0-4444 0-4437 + 8-0x 107 Neijssel et al. (1996)

corrected for maintenance fg glucose
m: apparent maintenance fg glucose 6x107*
rate at £ =0 fg dry mass - min
V,,: median cell volume at =0 fl 0-4
Time for replication + cell min 60
division (only mechanistic
Donachie models)
Minimal cell size fl 0-1
Cell density (dry mass) fg -1 290
D: diffusion coefficient for pm?2 min~! 40 680

5-918 x10#£2:2%x10°¢  Neijssel et al. (1996)

0-396 £ 1-8 x107*
Not applicable

Donachie & Robinson (1996)
Donachie & Robinson (1996)

Assumed to be 1/5 of minimal
volume-at-division

Not applicable

Not applicable Shuler et al. (1979)

Not applicable Adam et al. (1977)

concentration gradient was read from the middle
horizontal row of the lattice to calculate the diffusion
coefficient resulting from a known input parameter.
From this ratio, a calibration factor was established for
simple conversion of a literature diffusion coefficient
into the model input value.

Uptake

As substrate has to be taken up through the cell’s
surface, it is straightforward to assume that uptake is
proportional to surface area (Kooijman et al., 1991;
Button, 1993). The changes of surface-to-volume ratio
during the cell cycle would result in non-exponentiality
of the cell’s growth curve if uptake limits growth.
However, after a long controversy, it is now generally
assumed that the growth of a single cell does not deviate
significantly from the exponential growth law (Koch,
1993). Two considerations might explain this. Firstly,
the surface-to-volume ratio might change only slightly
during the cell cycle since cell width changes during the
cell cycle result in maintaining a more constant ratio
(Domach et al., 1984). Secondly, most substrates are
transported into the cell by proteins, which might be
incorporated into the membrane at the same rate as the
increase of cytoplasm and synthesis of cytoplasmic
protein. Then, uptake and metabolic potential would
increase proportionately despite changes of the surface-
to-volume ratio during the cell cycle. If transporter
incorporation into the membrane is indeed proportional

to overall protein synthesis, uptake and catabolic
activities of the cell are kept in balance during the cell
cycle, sparing the cell additional regulatory steps.

To illustrate the magnitude of the deviation from non-
exponentiality due to surface area dependent uptake, we
compared simulated growth with uptake proportional
to either surface area or volume. The deviation of the
growth curve from an exponential fit curve is hardly
visible in the primary plot, but the residuals curve
(residuals = observed — predicted) clearly shows faster
than exponential growth at the beginning of the cell
cycle and slower growth at the end in the case of surface-
dependent uptake (Fig. 3). Maintenance was not surface
dependent in either case. The overall growth rate of the
cell during one cycle is equal to the population growth
rate in both cases. The autocorrelation coefficient of the
relative residuals quantifies the noisiness of the residuals
curve, with a value of 098 for perfect exponential
growth (Fig. 3a) and —0:009 for surface-dependent
growth (Fig. 3b). The extent of the deviation from
exponentiality can be given by the range of the relative
residuals, with a value of 3x107® for Fig. 3(a) and
2% 1072 for Fig. 3(b).

In the absence of evidence for surface area pro-
portionality of growth and the effort required to model
the increase of surface area during the cell cycle
adequately [cell width, length and eccentricity all depend
on growth rate and change during the cell cycle; also,
they differ from strain to strain (Donachie & Robinson,
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Fig. 3. Deviations from exponential cell growth due to surface-
area-dependent uptake. ——-, Simulated growth curve; ---,
fitted curve; ——, residuals (simulated data minus fitted curve).
(a) Perfect exponential growth in the case of volume-
dependent uptake. The residuals curve shows noise, but no
systematic deviation from exponentiality. (b) Non-exponential
growth in the case of surface-area-dependent uptake. The
residuals curve shows systematic deviation from exponentiality
(noise not visible at this scale). Growth is faster than
exponential at the beginning of the cell cycle, but slower than
exponential at the end.

1996)], it appears best to use dry mass proportionality
throughout. Also, this approach makes the model
applicable to different cell shapes. Note that however
the growth of a single cell is modelled, the asynchronous
growth of a population of cells is exponential.

Maintenance

The simplest models for maintenance with a constant
demand per biomass are those of Pirt (1965) and Herbert
(1958), which differ only in assuming different sources
for the maintenance energy, substrate or biomass,
respectively. We have used the formulation by Herbert
because his model behaves well in the case of low
substrate concentrations where maintenance s
especially important. In the Herbert model, no substrate
is consumed at zero substrate concentration and the cells
are allowed to shrink, in contrast to the Pirt model,
where growth is always positive. Due to the postulated
substrate concentration independence of maintenance,

the Pirt model even describes consumption of substrate
in its absence.

Maintenance energy is a collective term for all energy
expenditures not directly contributing to growth. It thus
encompasses energy costs for different purposes and
subject to different regulation (Tempest & Neijssel,
1984). For a more mechanistic understanding and
modelling of the cell’s energetics, it might be helpful to
distinguish maintenance requirements proper from
losses due to futile cycles, etc. Since most of this
maintenance energy proper is spent on providing solute
gradients across the cell membrane (Tempest & Neijssel,
1984), the maintenance rate can be considered to be
surface area dependent.

Surface area dependence of maintenance, as with
surface-dependent uptake, causes deviation from
exponentiality of the cell’s growth curve, but to a lesser
degree (one order of magnitude) and in opposite
directions (data not shown). The extent of deviation,
given by the range of relative residuals, is 3 x 10~® and
the autocorrelation coefficient of 0-99 signifies absence
of noise in the residuals curve.

Cell division

Correctly simulating cell size as a function of growth
rate is an important requirement for models in microbial
ecology since the cell size affects starvation survival and
metabolic rates. Donachie (1968) found, for cells grow-
ing at all growth rates, that cell masses at which
initiation of DNA replication is triggered are multiples
of one particular mass. Donachie concluded that cell
division occurs at a fixed time (60 min for E. coli,
consisting of the time for DNA replication plus that for
cell division) after the cell has reached the trigger volume
or multiples thereof. This model is attractive due to its
simplicity.

We have implemented this model, which we will call the
mechanistic Donachie model, in our code. In addition,
we implemented an extension of this model, called the
mechanistic Donachie model with eclipse period. The
eclipse period is the minimal interval between divisions
and is implemented simply as an additional requirement
to be met before cell division is allowed. This extension
was made in order to improve the performance of the
mechanistic Donachie model as it did not result in
balanced growth at higher growth rates (Fig. 4).
Although such an eclipse period has been described, the
empirical value of about 12 min (Helmstetter, 1996) is
much lower than the value which was required to force
the mechanistic Donachie model to produce balanced
growth, which was equal to the minimum doubling
time.

Donachie also proposed equation (6a) describing the
dependence of the median cell volume on growth rate.
We have also implemented this model, which we call the
descriptive Donachie model, as a third alternative into
our code.
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In Fig. 4 the results of the three different Donachie
models are compared. Values of the minimal median cell
volume (fl) were 0-51+0-01 for the mechanistic model,
0-565 400004 for the mechanistic model with eclipse
period, and 0:396 +0-0002 for the descriptive model. At
growth rates >1-1 h™', the simple mechanistic model
results in unbalanced growth with periodically changing
interdivision times (one period consists of the following
sequence of interdivision times: long, short, shorter,
short). The shift to unbalanced growth at higher growth
rates was not due to u approaching p,,,., but occurs
above a particular threshold of u, as changing .
showed. Reducing the delay time from 60 min to 30 min
or below, well below the experimental value of 60 min
(Table 2), prevented unbalanced growth. Both mech-
anistic models result in excessively large cell volumes.
Unbalanced growth and oversized cells indicate an
overshoot phenomenon which also occurs with linearly
growing cells (data not shown). Only the descriptive
model performs well. For this model, a relationship
between the median cell volume predicted from the
Donachie equation (6a) and the volume-at-division has
to be used. Koch (1993) gives a median cell volume/birth
volume ratio of 1-325 for perfect (no randomness)
exponential growth, derived from the canonical size
distribution. This is slightly lower than the value of
1-433 determined directly from our simulation results
with non-random exponential growth, that is, not using
a theoretical size distribution. We have used the ratio
from our simulation while implementing the descriptive
Donachie model. Note that the median cell volume can
be regarded either as a measure averaged over the
population or as a measure averaged over the cell cycle.
It is used in the former sense as a constraint in
population-based models and in the latter in our
individual-based model, solely to convert cell volume
parameters based on median volume into parameters
based on volume-at-division.

It is apparent that a mechanistic cell division model
needs to include positive and negative regulatory
elements to give balanced growth. For our purposes, the
descriptive Donachie model, though not mechanistic, is
to be preferred since it 51mulates the dependence of cell
size on growth rate correctly. Jaworska et al. (1996) used
a formulation similar to our descriptive model. But they
substituted x for number of generations in 1h in the
Donachie equation (6a) and use a value of 0-8 fl for the
minimum reproductive volume, whereas the value of
0-4 fl used here for V, corresponds to a minimum
reproductive volume of 0-558 fl (2V,/1-433). Domach
et al. (1984) used a detailed biochemical model for cell
division successfully. In their mechanistic model, regu-
lation of replication initiation is controlled by a negative
feedback loop where the rate of synthesis of repressor
and anti-repressor is simulated. Termination of rep-
lication then starts septum formation. This supports the
view that negative feedback is necessary for a mech-
anistic cell division model. Their model requires detailed
knowledge of synthesis rates of key proteins and is
therefore not easily applicable to other bacteria.

Growth synchrony

Synchrony of growth has no causes; absence of
synchrony does. The total lack of growth synchrony,
though invariably observed in bacterial cultures, should
not be taken for granted, as the division of a cell into
perfectly equal daughter cells would give rise to a
synchronous culture. Only if the offspring are not equal,
and daughter cells grow with different rates and divide
at different volumes, does asynchrony ensue. Since
division can never be perfect, asynchrony is impossible
to avoid completely in growing cultures. It improves the
survival of the culture as a whole as compared to a
hypothetical synchronous one because cells in different
stages of the cell cycle are more vulnerable to particular
hazards than cells in other stages.

Here, we simulate the loss of synchrony in order to test
the quantitative importance of likely causes of
desynchronization. How fast do variations in growth
rate and volume-at-division desynchronize a culture?
How strong is the effect of spatial heterogeneity on
growth synchrony? Cultures synchronized by selection
techniques, which are never perfectly synchronous at the
beginning, lose their synchrony in about 3 generations
(Ingraham et al., 1983). Considering the initial lack of
synchrony, it might be estimated that a complete loss of
synchrony takes about 5 generations. In our simulations,
the degree of synchrony after 5 generations is about
25 % with variation of V,,, ., 40 % (thatis already almost
the minimum obtained) with variation of volume-at-
division, and 23 % with variation of both (Fig. 5). Loss
of synchrony appears to be slightly slower in our
simulation using a reasonable estimate for the of
these parameters ( 0-1). This might be due to other
variations affecting synchrony additionally, such as
unequal cell division.

To aid in summarizing and comparing synchrony data,
a single-number measure of synchrony is essential.
Several different measures for the degree of synchrony
have been proposed (Blumenthal & Zahler, 1962;
Koppes et al., 1980; Cooper, 1991). However, having
been used for growth in a constant and uniform
environment, they are not general enough for our
purposes. Also, established measures of synchrony have
been criticized on the ground that they mix sharpness of
cell number increase with the duration of that increase
(Cooper, 1991). We propose a new measure that is
derived entirely from analyms of the growth curve,
thereby avoiding assumptions of a particular growth
law, of constant growth rate, or of a well-mixed culture
(Fig. 5). It can be regarded as describing the sharpness
only of cell number increase. The difference of the log,
of the cell number between time-steps # and n+1, di,
directly gives the degree of synchrony at time-step # with
a range of 0 (complete lack of synchrony) to 1 (complete
synchrony). However, as dl of course fluctuates im-
mensely in the case of random variation of growth rate,
cell volume at division, or spatially varying substrate
concentration, it has to be treated as a statistic. We
found the moving standard deviation of dl, mSD(d!), to
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Fig. 4. (a—c) Growth curves at the same and maximal growth
rate for the three different implementations of the Donachie
model: (a) descriptive, (b) mechanistic with eclipse, and (c)
mechanistic without eclipse. ——, Cell number; ---, cell volume.
Note that unbalanced growth as in the case of (c) occurs only at
higher growth rates. (d) Cell cycle median cell volume as a
function of generations per hour for the three different
models. Symbols are data from individual simulations; lines
represent non-linear fits of the data against the Donachie
equation (6a) V =V, 29, where g is the number of generations
in 1h, Vis the median cell volume at a given g, and V,, is the
minimal median cell volume. Des, descriptive model ( , ®);

be a suitable parameter. A window width equal to the
minimum interdivision time was used. The window was
moved in steps of one, starting with its centre at the
time-step of the first division. mSD(dl) can be
normalized by dividing it by its theoretical maximum,
which is a function of the number # of data points (time-
steps) contained in the window of width w: mSD(d!) .«
= \/1/n. mSD(d!), after normalization, ranges from 0
to 1, as does dl itself. The intermediate values are well
defined, as analysis of artificial mixtures of a synchron-
ous and asynchronous simulated culture showed.
mSD(d!) is not affected by changes in population growth
rate.

Random variation of cell parameters. In studying
synchrony, parameters to vary randomly were chosen in
order to have heterogeneity of cell size and growth rate
in the culture. For the coefficient of variation () of the
volume-at-division, a typical value of 01 (Koch &
Schaechter, 1962 ; Koch, 1993; Koch, 1996b) was used.
(Available data give the  of length-at-division. The

for volume-at-division is almost as high as the  for
length-at-division if the variability of the width-at-
division is assumed to be small compared with length-
at-division.) We are not aware of quantitative data for
the  of V. that are independent of the variation of
size-at-division or which would allow a correction.
Hence, we chose a value of 0-1. Jaworska et al. (1996)
structured the population similarly by varying the
maximal anabolic rate and minimum reproductive
volume. Random variation of V. led to complete
desynchronization whereas random variation of the
volume-at-division did not (Fig. 5). Variation of volume-
at-division can be regarded as an imprecision of volume
measurement by the cell and it broadens the size
distribution and more so the age distribution. This view
is substantiated since fluctuations in the size at one
division are not correlated with the fluctuations in size at
the previous division (Schaechter er al., 1962). Size
variation does not affect growth rate if uptake and
maintenance are proportional to biomass, as holds here.
Even when size does not affect growth rate, a correct
simulation of cell size and cell size variation is important
since a large cell can survive longer without substrate
and divide more readily upon resupply of substrate.

Spatial heterogeneity. Spatial heterogeneity of substrate
concentration results from the balance of substrate
uptake by the cells of the colony and the diffusion of
substrate from the peripheral reservoir into the colony
(Fig. 6).

Again, a single-number quantifier of spatial hetero-
geneity is essential for comparing results. As a very
simple and entirely general new measure of spatial
heterogeneity we propose the use of the standard

Ecl, mechanistic with eclipse (---, O); Mec, mechanistic
without eclipse (---, @). Note that the latter two data sets are
identical at lower growth rates but different at higher growth
rates (1 above 1-1 h™', corresponding to 1:59 generations h™").
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Fig. 5. Loss of growth synchrony due to random variation of
cell parameters. ——, —— -, Degree of synchrony (——, mSD(d/) ;
-——, fit); ---, log,(cell number); ----, change of log,(cell
number) per time-step. An exponential function, mSD(dl) =
1—a(1 —exp[—1(t—w/4)]), was fitted to the degree-of-synchrony
trace [mSD(dl)] with (1—a) as the asymptote, 7 as the time
constant and w as the window width. (a) Without random
variation, no loss of synchrony. (b) Random variation of V.,
complete loss of synchrony (asymptote from fit is zero). (c)
Random variation of volume-at-division, partial loss of
synchrony. (d) Random variation of both parameters, complete
loss of synchrony (asymptote from fit is zero). Loss of synchrony
is exponential in all cases.

deviation of substrate concentration in the areas oc-
cupied by cells. This can be computed in two ways.
Either the occupied space can be divided into sections
using the substrate concentration in each section, or the
substrate concentration that is experienced by each cell
is used for computing the  (using N, the number of
data points, as divisor since it is not a sample ). The
latter method weights the contribution of a particular
area according to the number of cells it contains and is
thus preferable. In both cases, the  has two important
properties. First, if the spatial resolution (grid granu-
larity for example) is altered, the is not affected
systematically. Second, if the size of the occupied space
changes during colony development, or the number of
cells occupying a particular zone changes, the is
invariant. The  can be used as a relative measure. A
sharp increase in cell number, however, leads to
temporary fluctuations due to the necessary reshuffling
of cells following a burst of cell divisions (Fig. 6).

Spatial heterogeneity did not really desynchronize the
cells since cells at the colony rim continued to grow
synchronously with the rate the colony started off with.
However, the population became increasingly sub-
divided into fractions growing at different rates, which
resulted in apparent asynchrony.

Conclusions

Surface-area-related uptake and maintenance rates are
appealing from a physico-chemical point of view but are
not backed up experimentally. Simulations show the
effect of surface dependence on cell growth to be
minimal. For a population model of rod-shaped bac-
teria, it appears appropriate to disregard cell shape and
surface area.

Of several simple implementations of a cell division
model, only the descriptive version of the Donachie
model correctly reproduced the cell size dependence on
growth rate.

Growth synchrony is not completely lost if the cell
measures volume-at-division imprecisely (no hereditary
changes), buta  of 01 for V. is largely sufficient to
explain the rate of loss observed in cultures synchronized
by selection techniques. Desynchronization follows
exponential decay kinetics in both cases of random
variation of cell parameters but not if it is due to

increasing spatial heterogeneity.

In two cases, it was necessary to formulate new measures
to describe simulation results. With growth synchrony,
the moving  of the derivative of the logarithm of the
growth curve [mSD(d!l)], and with spatial heterogeneity,
the  of substrate concentration or whatever is to be
considered, were found to be useful universal measures.
Both quantities can be measured. For mSD(dl), the
growth curve of the population is needed. For the  of
substrate concentration or growth rate, measurements
with microelectrodes or modern microscopic techniques
are needed.
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Fig. 6. (3, b). Loss of growth synchrony due to increasing spatial heterogeneity (no random variation of cell properties).
Glucose concentration was 1fgfl™' (a) and 0-1fgfl™' (b). ——, Degree of synchrony [mSD(dl)]; ..., ---, spatial
heterogeneity (..., cv of substrate concentration; ---, spline fit). Note the fluctuations due to synchronous growth; bursts
of divisions leading to rearrangements of cellular positions cause temporary fluctuations of the cv as a measure of spatial
heterogeneity (if calculated by looping through all cells’ exterior substrate concentration). Loss of synchrony typically
does not follow a simple exponential decay function. (c, d) Screen shots. Spatial heterogeneity at the end of runs (about
1000 cells) at reservoir substrate concentrations of 1fg fl™! (c), 391 min, and 0-1fg fI-' (d), 939 min. At 10 fg fl”", the
spatial heterogeneity stays very low (cv<0-1) and is not visible on screen shots; also, growth synchrony stays perfect (data
not shown). The substrate concentration gradient is visualized as follows: the darker the square, the higher the
concentration (logarithmic scale). The substrate concentration in the middle of panels (c) and (d) is too low to support
significant uptake rates. Cells in the middle shrink at a maximal rate which is equal to the maintenance rate. The grid size
used, of 2 x 2 um, was sufficiently small. Simulations including random variation of cell parameters look very similar (data

not shown).

During this study, the lack of information on the
individual heterogeneity of growth parameters became
increasingly apparent to us. Most reports on this subject
are part of the early work on cell division and focused on
size-at-division variability. We feel that a revival of
research in this area employing modern techniques
would be rewarding. Another area where information
required for modelling is insufficient is the volume
fraction occupied by cells in colonies and biofilms. The
most appropriate study in this regard is a statistical
analysis of cellular volume fractions in biofilms,
although cell cluster areas were not treated separately
(Korber et al., 1993). We are not aware of a similar study

for colonies. Sadly, this so far precludes a quantitative
comparison of our simulated colony shapes and struc-
tures with real colonies.

Qualitatively, the simulated colony structure at low
glucose concentration (0-1 g1™') resembles the fractal
colony patterns observed experimentally and with
diffusion-limited aggregation (DLA) models
(Matsushita, 1997; Wimpenny & Colasanti, 1997).
These patterns emerge in simulations where particles
diffuse randomly starting at the periphery (slow process)
and become stuck when hitting a cluster (fast process).
In our simulation, the mechanisms are somewhat
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different; metaphorically speaking, food particles stick
to agents but agents themselves are not sticky, have
variable extent, and grow not only at the cluster surface.
Nevertheless, the DLA pattern results.

BacSim shows that using readily available parameters, it
is possible to construct a spatially explicit IbM of
bacterial population growth that is quantitatively cor-
rect. The model will be extended to allow simulation of
growth at a larger spatial scale as well as cell differen-
tiation and pheromone signalling, aiming at modelling
multi-species biofilms. Due to the flexibility and gen-
erality of the object-oriented model structure, we expect
considerable leverage in building new applications.

IbM of bacteria has great promise. The task of under-
standing a given complex adaptive system requires
integration of analytical and synthetic approaches. It is
not finished after an experimental dissection of the
system into its parts and the study of these parts, as the
question remains whether we can reconstruct the
behaviour of the complete, macroscopic system by
putting what we have learnt about these pieces back
together again in a model. IbM is ideal for this as it does
not suffer from limitations in principle. We hope to have
convinced our readers that IbM is also feasible for
bacteria.
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